
1 

 

New approaches to dating intermittently varved sediment, 

Columbine lake, Colorado, USA 

Stephanie H. Arcusa1, Nicholas P. McKay1, Charlotte Wiman2, Sela Patterson1, Samuel E. Munoz2,3, 

Marco A. Aquino-López4 

1School of Earth and Sustainability, Northern Arizona University, Flagstaff, 86011, USA 5 
2Department of Marine and Environmental Sciences, Northeastern University, Marine Science Center, Nahant, 01908, USA 
3Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, USA 
4Centro de Investigación en Matemáticas (CIMAT), Jalisco s/n, Valenciana, 36023 Guanajuato, Gto, Mexico 

Correspondence to: Stephanie H. Arcusa (sha59@nau.edu) 

Abstract. Annually laminated lake sediment can track paleoenvironmental change at high-resolution where alternative 10 

archives are often not available. However, information about both paleoenvironmental change and chronology are often 

affected by indistinct and intermittent varves. We present an approach that overcomes these and other obstacles by using a 

quantitative varve quality index combined with a multi-core, multi-observer Bayesian varve sedimentation model that 

quantifies realistic under- and over-counting uncertainties while integrating information from radiometric measurements 

(210Pb, 137Cs, and 14C) into the chronology. We demonstrate this approach on thin sections of indistinct and intermittently 15 

varved sequences from alpine Columbine Lake, Colorado. The integrated model indicates 3137 (95 percentile highest 

density probability range: 2753-3375) varve years with a cumulative posterior distribution of counting uncertainties of -

13/+7 % indicative of systematic observer undercounting. The sedimentary features of the thin and complex varves shift 

through time, from normally graded couplets to couplets interrupted with coarser sub-laminae, to inversely graded couplets. 

We interpret the normal grading couplets as spring nival discharge followed by winter settling, the coarser sub-laminae as 20 

high rainfall events, and the inverse grading as hyperpycnal flows and/or pulses of dust related to human impact changing 

the varve formation mechanism. Our novel approach provides a realistic constraint on sedimentation rates and quantifies 

uncertainty in varve counts by quantifying over- and under-counting uncertainties related to observer bias and the quality 

and variability of the sediment appearance. The approach permits the construction of a varve chronology and sedimentation 

rates for sites with intermittent or indistinct varves, which are likely more prevalent than sequences with distinct varves, and 25 

thus, expands the possibilities of reconstructing past environmental change with high resolution. 

1 Introduction 

The establishment of a reliable chronology for lake sediment is a pre-requisite of paleoenvironmental investigation. As many 

studies have pointed out, low age uncertainty is necessary to compare events through space, time, and archive (Zimmerman 

and Wahl, 2020). To that end, annually laminated sediment (i.e., varves) not only presents a unique opportunity to 30 
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reconstruct variability on a seasonal to annual scale, it allows for the quantification of sediment accumulation rates on 

shorter timescales than sequences dated by radiometric techniques (Boers et al., 2017). Sedimentation rates are useful for a 

wide range of investigations, but especially so for the accurate calculation of fluxes (g cm2 yr-1) of sedimentary constituents. 

For paleoenvironmental reconstructions, flux is typically a more meaningful measure than abundance or concentration 

because it considers changes in the sediment due to time and density. For example, investigations using lake sediment of past 35 

aerosol deposition such as dust report different conclusions when flux is used compared to abundance (Arcusa et al., 2019; 

Routson et al., 2016, 2019). The importance of constraining age and sedimentation rate uncertainty is increasingly 

recognized and the tools to handle this uncertainty are constantly improving (Aquino-López et al., 2018; McKay et al., 

2020). 

  40 

Despite general improvements, the quantification of uncertainty in varved sediments remains focused on counting. Although 

there is no standard method for calculating uncertainties in varve chronologies, most are associated with ±1-4 % counting 

uncertainty with some indistinctly varved sequences having counting errors up to ±15 % (Ojala et al., 2012). Counting errors 

are often quantified as the root mean squared error of counts from multiple observers along defined transects on multiple 

cross-dated cores from the same site either as maximum and minimum deviations from the mean or as replicated counts 45 

between marker layers (Lamoureux, 2001). Reported error estimates commonly do not include all known error sources.  

  

Error sources are associated with (1) inter-site differences in varve counts (missing varves), (2) subjectivity in identifying 

varves due to varve quality, (3) expert judgement in identifying marker layers, (4) compound single varves that are mis-

interpreted as representing multiple years (over counting), (5) indistinct varves that are combined with adjacent varves 50 

(under counting), (6) intermittent (floating) varves, (7) technical issues (missing varves), and (8) counting strategies (Fortin 

et al., 2019; Ojala et al., 2012; Żarczyński et al., 2018; Zolitschka et al., 2015). Although these various sources are often 

considered individually, they are less frequently considered in concert and rarely considered when estimating sedimentation 

rates. The variety of error sources makes their quantification an important challenge, especially for sequences with indistinct 

or intermittent varves. 55 

  

Sedimentary sequences with indistinct or intermittent varves cannot be used to develop a chronology with conventional 

techniques as the massive sediment or indistinct laminations result in information loss. The problem is often addressed by 

subjectively applying the sedimentation rate estimated from neighboring varved sections, although more mechanistic 

methods have also been developed. For example, Schlolaut et al. (2012) describe a procedure that analyses the seasonal layer 60 

distributions to estimate the number of years of sediment accumulation represented. Although promising, such a method of 

varve interpolation has yet to be integrated with a complete accounting of all other errors. 
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Few previous works have attempted to assess errors associated with varve counts by their sources. For example, Fortin et al. 

(2019) developed a Bayesian probabilistic model to incorporate three sources of uncertainty related to the subjectivity in 65 

identifying varves, inter-site differences, and a combination of the likelihood of over- and under-counting by the observer 

and the proper identification of isochronous marker layers. Although this model provided a clearer picture of the sources of 

uncertainty, it did not go as far as addressing the problem of indistinct varves (such as those deposited during the 20th 

century as glacier influence waned) nor quantifying the impact of varve quality on the chronology.  

  70 

Additionally, errors can be systematic in that the net outcome is one of over- or under-counting. These systematic biases are 

typically assessed by comparing the varve chronology to radiometric methods (137Cs, 210Pb, and 14C) and can sometimes be 

corrected. For example, the agreement between varve and radiometric chronologies can be evaluated objectively through 

OxCal’s V_sequence, for example (Bronk Ramsey, 1995; Tian et al., 2005; Zander et al., 2019). The 14C ages can reveal 

missing sediment intervals where missing varves can be inserted (Tian et al., 2005). However, the process has two major 75 

drawbacks. First, the 14C ages could be too old, or, if they are correct, the location of the nonconformity in the sedimentary 

sequence might be misplaced. Second, this approach does not constrain the uncertainty introduced into the estimation of the 

sedimentation rate.  

  

Here, we present an approach to quantify age and sedimentation rate uncertainty using multiple cores and observers as 80 

demonstrated in a case study of an indistinctly and intermittently varved sequence from Columbine Lake, Colorado. We 

expand on the Fortin et al. (2019) Bayesian model to include uncertainty from multiple observers, varve interpolation, and 

varve quality. We then use Bayesian learning to update prior estimates of the counting uncertainties given the constraints 

from independent radiometric ages. Partly because continuous chronologies are rare, no late Holocene varve sequence has 

been published from the southern Rocky Mountains up to now. Moreover, the nearest published varved lake record is 250 85 

km away (Anderson et al., 2010). The chronology developed here provides the foundation for future high-resolution 

paleoenvironmental research at Columbine Lake. 

2 Study Site 

Columbine Lake (37.8622º N, 107.7717º W, elevation 3874 m) is a deep, mildly acidic (pH 5), oligotrophic lake in San Juan 

County, Colorado (Fig. 1). The lake bathymetry is marked by deep pockets, with a maximum depth of 27 m. Deep and small 90 

sub-basins favor seasonal stratification and anoxic conditions necessary for varve formation (Zolitschka et al., 2015). The 

lake is fed by a small pond and stream to the northwest and drained by Mill Creek to the northeast. The catchment bedrock is 

andesite emplaced during the late and middle Tertiary (Lipman and Mcintosh, 2011), and less than 5 % of the area was 

vegetated in 2017 (Arcusa et al., 2019). The catchment is currently unglaciated and shows no evidence for rock glaciers. The 
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closest documented evidence of a Little Ice Age moraine is near Trinity Peaks (Carrara, 2011). There are no access roads, 95 

but historic mining activity is evident at lower elevations and the lake outflow is raised by a 2-m-high earthen dam.   

 

Figure 1. Columbine and its catchment showing (a) bathymetry and (b) coring location (red circles) in southwest 

Colorado (black rectangle in inset map). Vegetation extent for the year 2017 based on Arcusa et al. (2019). Image 

credit: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and 100 

the GIS User Community. 

  

The climate of Silverton, Colorado (elevation 2865 m) near the study site is typified by a biseasonal climate. Over 80 % of 

precipitation falls predominantly as snow from October to March (average 560 mm/month total snowfall) from Pacific 

frontal storms, and summer rainfall is associated with the northern extent of the North American Monsoon (Jul-Sep, average 105 

70 mm/month). Average winter (DJF) and summer (JJA) temperature ranges are –18.8 to 2.5 °C and –0.1 to 22.8 °C, 

respectively (Western Regional Climate Center, 2018). Like much of the Southwest United States, the El Niño Southern 

Oscillation (ENSO) teleconnection usually results in wet winters during El Niño and dry winters during La Niña (Sheppard 

et al., 2002). 

3 Methods 110 

3.1 Coring 

Four sediment cores were collected from Columbine Lake at water depths ranging from 25 to 27 m. One 81-cm-long core 

was taken in August 2016 (COL16-1) using an aquatic corer, and three 125- to 142-cm-long cores were collected in 

September 2017 (COL17-1, COL17-2, and COL17-3) using a modified UWITECH percussion coring system. All three 2017 

cores captured the undisturbed sediment-water interface, but the 2016 core did not. Cores were split, described, and stored at 115 
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the Sedimentary Records of Environmental Change Lab at Northern Arizona University. Consistent core stratigraphy and 

marker layers found in all cores except COL17-1 facilitated visual core cross-correlation (Error! Reference source not 

found. Fig. A1). Core COL17-1 is not laminated, possibly because it was collected at shallower depth, and was not 

considered further in this study. 

3.2 Non-destructive core analysis 120 

To support the visual correlations, cores COL16-1, COL17-2, and COL17-3 were analyzed for non-destructive methods. 

First, magnetic susceptibility (MS) was measured at 1 cm increment (2 cm measurement diameter resolution) using a 

Bartington MS2 surface sensor. Then, X-Ray Fluorescence (XRF) was measured at 0.5 and 1 cm intervals (1 cm 

measurement diameter resolution) at 10, 30, and 50 kV using an Avaatech core scanner at Texas A&M University, College 

Station. Finally, hyperspectral imaging in the visible to near-infrared range was measured at ~68 µm/pixel using a Specim 125 

Ltd. core scanner equipped with a PFE-xx-V10E camera at Northern Arizona University following the method by Butz et al. 

(2016). The hyperspectral data were used to calculate indices shown to be related to chlorophyll and its degradation products 

(RABD660) (Trachsel et al., 2010; Yackulic, 2017) as well as chlorite (minimum peak) (Rein and Sirocko, 2002). 

3.3 Destructive core analysis 

To support the sedimentological facies interpretation, various destructive analytical analyses were performed on core 130 

COL17-3. Loss-on-ignition and wet and dry bulk density following Dean (1974) used 1-2 cm3 of sediment weighed wet and 

dry after freeze-drying for 12 hours, then weighed after burning at 550 ºC for 5 hours in the furnace. An aliquot of 80 mg of 

material was then used for quantifying the abundance of biogenic silica following an adapted procedure of Mortlock and 

Froelich (1989). Briefly, the samples were pre-treated to remove organics. Biogenic silica was brought to a solution and 

measured by spectrophotometry. Finally, an aliquot of 200 mg of material was used for grain size analysis. The initial 135 

procedure was the same, but the solution of biogenic silica was discarded. Then, sodium hexametaphosphate was added as a 

dispersant and shaken for 3 hours. Grain size distributions in the 0.04–2000 µm range with 116 classes were analyzed using 

a laser diffraction Coulter LS13-320 and each sample was measured 5 times. 

3.4 Geochronology 

This study added three radiocarbon dates to the three previously published by Arcusa et al. (2019) on cores COL17-3 and 140 

COL16-1. Macrofossil of terrestrial plants and aquatic insects were pre-treated using standard acid–base–acid procedures 

and analyzed for radiocarbon activity on Northern Arizona University's MICADAS equipped with the Gas Interface System 

while it was located at the manufacture's (IonPlus) office in Zurich, Switzerland. In addition to radiocarbon, Arcusa et al. 

(2019) also measured 210Pb and 137Cs activities respectively on 20 and 16 dried and homogenized samples over the top 12.5 

cm of core COL17-3 using a Canberra Broad Energy Germanium Detector (BEGe; model no. BE3830 P-DET) at the Marine 145 

Science Center at Northeastern University.  
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The radiometric age-depth model was constructed from the concurrent use of Bayesian modeling R software packages Bacon 

(Blaauw and Christen, 2011) and Plum (Aquino-López et al., 2018). Briefly, Plum is based on a statistical framework, which 

uses statistical inference to provide more robust and realistic uncertainties when compared to the Constant Rate of Supply 150 

(CRS) method (Appleby and Oldfield, 1978). The concurrent use of Bacon and Plum reduces the artificial break in 

sedimentation rates at the intersection of the 210Pb and 14C ages, and Plum provides a more natural merger of these 

techniques as it does not require the pre-modeling of the 210Pb dates. Additionally, we compare Plum to conventional 

calculations of CRS (Appleby, 2001) and the Constant Flux Constant Sedimentation (CFCS) method (Krishnaswamy et al., 

1971) implemented with the R package SERAC (Bruel and Sabatier, 2020). 155 

3.5 Thin sections, sediment imaging, and point measurements 

To facilitate investigation, measurement, and counting of the fine laminations, the sediment was subsampled and 

impregnated with low viscosity epoxy resin following a modified approach of Lamoureux (1994). The percentage of epoxy 

to acetone was increased multiple times before fully embedding the sediment. Overlapping sediment slabs (7.0 x 3.0 x 1.5 

cm) were sampled and placed in an acetone bath for fluid replacement. Acetone was exchanged every 12 hours for five days 160 

until no water was left in the sediment. Following fluid displacement, Spurr’s Low Viscosity Embedding Resin was 

exchanged every 12 hours for three days and left to cure for one day at room temperature followed by one day at 40 ⁰C, one 

day at 50 ⁰C, and one day at 60 ⁰C. Slabs were cut at the Northern Arizona University machine shop and sections were sent 

to Quality Thin Sections in Tucson, AZ, for mounting and polishing. Images of the thin sections were taken at 2x and 10x 

magnification under polarized light with a calibrated petrographic polarizing microscope (Carl Zeiss Axiophot) connected to 165 

a digital camera (Carl Zeiss Axiocam) and automated stepping stage (PETROG System, Conwy Valley Systems Ltd (CVS), 

UK). Individual images were stitched into a mosaic using the Stitching plugin (Preibisch et al., 2009) in ImageJ.   

  

To categorize and interpret varve facies, microscopic analyses of elemental composition and grainsize are sometimes used 

(Cuven et al., 2010; Żarczyński et al., 2019a). In this study, the varves were thinner than the sampling resolution of either 170 

destructive (BSi and grain size) or non-destructive (XRF, hyperspectral, and MS) procedures available. Therefore, we used 

point counts and length measurements directly on individual grains in the slides. At least 100 grains were measured from the 

varve transects. 

3.6 Statistical analyses 

To support the interpretation of the sedimentary facies, statistical analyses were performed on the results from both 175 

destructive and non-destructive procedures. First, the values were binned to match the sampling resolution of the dataset 

with the lowest resolution using the function bin2d in the R package geoChronR (McKay et al., 2021). Second, the values 

were standardized to a mean of zero and variance of one standard deviation. Then to identify distinct stratigraphic units, 
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hierarchical cluster analysis was applied using the function chclust R package rioja (Juggins, 2020). To associate units to the 

variables explaining the most variance, a principal component analysis that was applied with the function PCA in the R 180 

package FactoMineR (Lê et al., 2008). Finally, to explore the relationship between variables, correlation analysis was 

performed using Spearman’s rank as the data distribution failed the Shapiro-Wilks normality test in most cases (p < 0.05). 

3.7 Varve chronology 

3.7.1 Description of the original varve model 

The data analysis in this study expands on the original R (R Core Team, 2019) package varveR (McKay, 2019) that builds 185 

varve chronologies while quantifying uncertainty as it relates to varve identification, inter-site differences, and likelihoods of 

over- and under-counting. varveR is a Bayesian probabilistic model that quantifies age uncertainty by integrating 

information from the age distribution of marker layers from multiple cores (Fortin et al., 2019). The model follows two 

concepts. First, it uses the sedimentological understanding of the likelihood of the correct delineation of the varves such as 

those related to the ease of distinguishing them. Second, it takes advantage of the replication from the marker layers 190 

correlating between cores to quantify the likelihood of under- and over-counting and the uncertainty in the total count as a 

function of depth.  

 

The model’s inputs include (1) thicknesses for each varve for each core, (2) site-specific marker layers to stitch the thin 

sections together into a varved sequence, and (3) inter-site marker layers. In this study, thickness delineations were created 195 

as ArcMap shapefiles. Site-specific marker layers were identified in the overlap between two adjacent thin sections. Inter-

site marker layers were identified in each core for cross-correlation. All three were identified by three observers working 

independently to explore uncertainties associated with expert judgment. 

 

The model uses prior likelihoods of over- and under-counting and updates them as it iterates. The prior likelihoods are 200 

selected by the operator but may be the difference in the number of varves counted by two observers expressed as a 

percentage and converted into a probability, for example (Fortin et al., 2019). With each iteration, the only constraint is that 

the duration across cores between marker layers must be the same. varveR outputs an n-member ensemble of varve counts 

and thicknesses for each core and a composite of all cores, where n is a user-defined number of iterations. The ensemble is 

used to quantify the uncertainty in depth as a function of varve year and can be transposed to estimate uncertainty in varve 205 

year as a function of depth. The model is completely independent from radiometric age control.  

3.7.2 Modifications to the original model: varve quality index and varve emulator 

We expanded the varveR model to include information on varve quality as an indicator of the likelihood of over- and under-

counting. Although varve quality indices have been used in past research as a qualitative aide to interpretation (Bonk et al., 
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2015; Dräger et al., 2017; Żarczyński et al., 2018), here we integrate this information quantitatively. Each varve was 210 

associated with a code (1, 2, or 3) (Appendix A Fig. A2) with a corresponding distribution of over and undercounting prior 

probability estimate (Sect. 3.7.3). The codes are assigned by the clarity of the varve’s appearance, with a code value of 1 

being of higher clarity than a code value of 3. A code of 4 was used when it was difficult to distinguish whether two couple 

represented one or two years. In this case, they were counted as two varves, and denoted with a code of 4, which were 

assigned a 50 % probability of over-counting. The application of code 5 is described below. Finally, sections where sediment 215 

is likely missing for technical reasons (e.g., between two adjacent thin sections without overlap or in gaps created during the 

embedding process), were assigned a code of 6, and varves were similarly emulated although the number of missing years is 

unknown.  

 

Distinctly varved sediments are interspersed with indistinctly varved sections, which comprise zones up to 2 cm thick with 220 

weakly defined to no visible laminations (Appendix A Fig. A2). These indistinct sections were relatively common, 

comprising 8.7-19.6 % of the total sediment thickness across observers. For these sections, a code of 5 was assigned. 

Previous studies have addressed the issue of indistinct varve sections by either interpolating sedimentation rates from nearby 

varved segments (e.g. Hughen et al., 2004), or using the probability distribution of the varves’ seasonal layers to derive 

sedimentation rates (Schlolaut et al., 2012). Because our varveR approach requires an estimate of varve thicknesses for each 225 

year rather than an estimate of mean sedimentation rate or missing time, these solutions are insufficient. Instead, we simulate 

varves through these sections.  

 

To simulate varves in indistinct intervals, we developed a varve emulator that randomly chooses a distinctly varved section 

of the core and with a length of that section matches the thickness of the interval as nearly as possible. Because laminations 230 

at Columbine Lake are very thin (typically < 0.5 mm) relative to the thickness of the indistinct intervals (typically ~ 4 mm), 

this procedure alone matches the cumulative depth closely. Subsequently, a minute thickness adjustment is applied across the 

sequence to ensure a perfect match in total thickness and conservation of the depth of the core. This approach is reasonable 

where other varved intervals can serve as reasonable surrogates for indistinct sections. We argue this is the case for 

Columbine Lake, as the distribution of the varve thickness is similar in both cores throughout the sections with distinct 235 

varves (Appendix A Fig. A3). Furthermore, there is no evidence for systematic changes in the mode of deposition in these 

sections, as the indistinct sections occur throughout both cores, but not always at the same time and the sedimentary features 

were mostly the same above and below the indistinct sections. 

3.7.3 Chronology with symmetrical and asymmetrical uncertainty 

The modified varveR model was used to build two varve chronologies each following a different scenario. In both scenarios, 240 

codes 1, 2, and 3 were given over- and under-counting priors. In the first scenario, the priors were symmetrical and based on 

values found in the literature (Fig. 2a; e.g. Dräger et al., 2017). This was done to produce a chronology that would resemble 
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the conventional varve chronology construction and allow for comparison. However, due to missing or indistinct varves, 

varve chronologies are often subject to under-counting (Tian et al., 2005; Żarczyński et al., 2018). Because the varves in this 

lake are thin and often lacked clarity in their appearance, we considered a symmetrical prior to be unrealistic for Columbine 245 

Lake. A prior shifted towards under-counting was deemed more representative. Therefore, in a second scenario, we assigned 

wider symmetrical priors for code 1, wider asymmetrical priors for code 2, and assigned an uninformed asymmetrical prior 

for code 3 (Fig. 2b). This expanded version of varveR incorporates uncertainty pertinent to varve quality, inter-site variation, 

expert judgment (Fig. 3). 

 250 

 

https://doi.org/10.5194/gchron-2021-15
Preprint. Discussion started: 21 June 2021
c© Author(s) 2021. CC BY 4.0 License.



10 

 

Figure 2. Varve quality codes and their associated under- (UC) and over-counting (OC) gamma distribution priors 

for (a) symmetrical and (b) asymmetrical varveR. 

3.8 Varve chronology verification 

A varve-based age-depth determination should be cross-checked with other independent dating methods to (1) support the 255 

interpretation of varves as annual and (2) to identify systematic errors (Ojala et al., 2012; Zolitschka et al., 2015). To do so, 

the varveR and integrated model output is depth-calibrated and displayed as age-depth curves. Then, the near-surface counts 

are compared to radionuclide (137Cs and 210Pb) based age-depth models that use conventional CRS and CFCS and Plum, a 

Bayesian approach to 210Pb dating (Sec. 3.4). The full sequence is compared to a Bayesian radiocarbon age-depth model. All 

comparisons are made using the dated core (COL17-3). 260 

3.9 Varve and radiometric chronology integration 

Bayesian statistics provide the opportunity to combine different chronological data and their uncertainty (e.g. Buck et al., 

2003) as well as information regarding the sedimentation process (e.g. Blockley et al., 2008) by informing priors (Brauer et 

al., 2014). Here we use Bayesian learning to update prior estimates of the counting uncertainties for each observer given the 

constraints from the independent radiometric model. Then, we combine the model into a master chronology. 265 

  

Our Bayesian framework uses a custom Gibbs sampler to improve on the prior estimates of likelihood probabilities of over- 

and under-counting described for the varveR model. The Gibbs sampler is initialized using the prior estimates of over- and 

under-counting used in asymmetrical varveR (Fig. 2b). The sampler updates using an objective function that calculates the 

likelihood of a proposed varve chronology given the radiometric ages and their probability distributions. We assume the 270 

probabilities associated with varve quality codes 1 and 2 are best described using gamma distributions and must fall between 

0 and 1. For algorithmic efficiency, we loosely impose the assumption that proposed adjustments that increase over-counting 

rates should be balanced by decreases in under-counting rates, although overall reductions in both over- and under-counting 

are possible and do occur. The output of the log objective function is the product of the age probabilities of all radiometric 

samples and the over- and under-counting likelihood of all varve quality codes. The higher the output value, the closer the 275 

improved varve count is to the maximum likelihood of the product of the radiometric ages. The Gibbs sampler innovates on 

the previous over- and under-counting probabilities with each iteration if by adjusting with a small random number from a 

normal distribution if there is an improvement in the output of the log objective function (i.e. a higher value). We ran the 

Bayesian algorithm independently for each of the three observers until the objective values stabilized (~100 iterations), then 

removed the burn-in and thinned the parameter chain to keep 1000 values. Finally, for each observer, we select the 280 

parameters corresponding to the 300 highest objective values and combine them into combined posterior distributions. These 

posterior distributions on the counting rates are then used to drive an updated varveR model and produce a master 

chronology that effectively combines the radiometric model and the varve measurements from all observers (Fig. 3). 
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Figure 3. Schematic of the approach used in this study. (1) Gathering raw measurements of varve thickness, counts, 285 

and marker layers for each core and each observer. (2) Using a modified version of varveR to produce a chronology 

following scenario 1 (symmetrical and literature-derived likelihoods of over- and under-counting) and scenario 2 
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(asymmetrical and larger likelihoods of over- and under-counting). (3) Integrating radiometric information into the 

varve chronology by updating the prior likelihoods of over- and under-counting in an objective function. The 

posteriors of the nth best function output are used to run varveR and produce the final chronology that minimizes 290 

systematic bias and quantifies uncertainty related to misidentifying marker layers, observer bias, and varve quality 

and outputs sedimentation rates with uncertainty. 

4 Results 

4.1 Sediment profile 

Columbine Lake sediments were previously described generally by Arcusa et al. (2019) and more detail is provided here. 295 

The sediments contain five stratigraphic units composed of minerogenic, laminated silts and clays ranging in color from grey 

to reddish-brown to orange (Fig. 4 and Fig. 5). Three of the four cores showed identical sediment profiles, but only COL17-2 

and COL17-3 captured an intact sediment-water interface and laminations (Appendix A Fig. A1). 

4.1.1 Units 5 and 4 

Unit 5 (141-126 cm; depths in core COL17-2) is characterized by massive grey clay-sized sediment and lithogenic indicators 300 

(Si, Ti, K, Al, Rb, MS) are typically high and covary (Appendix A Fig. A4, A5 and A6). Unit 5 contained missing data so 

could not be included in the PCA (Fig. 5). The transition between units 5 and 4 is marked by a large and rapid increase in the 

redox element Mn, along with an instantaneous increase in Mn/Fe (Appendix A Fig. A5). Unit 4 (123-108 cm) is the first 

unit to contain laminations and correspond to the most elevated Fe and P. This unit contains type 1 varves. 

4.1.2 Unit 3 305 

Unit 3 (105-75 cm) contains poor quality laminations frequently interspersed with indistinct sections. The sections of 

indistinct varve preservation generally correlate across the parallel cores, although are more prevalent in core COL17-2 (Fig. 

4). Unit 3 is characterized by type 1 varves. 

4.1.3 Unit 2 

Unit 2 (72-12 cm) contains laminations of average clarity with indistinct sections (Fig. 4a). The sections of indistinct varves 310 

generally correlate across the parallel cores, with exceptions. Type 1 varves are present, although type 2 varves start to 

appear intermittently in core COL17-2. The break between units 3 and 2 coincides with a general shift from type 1 to type 2 

that is evident both in the thin section microfacies analysis and the hierarchical clustering. Unit 2 sees a small but significant 

decrease in magnetic susceptibility and Fe compared to unit 3 (Appendix A A4 and A5). 
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4.1.4 Unit 1 315 

This unit (12-0 cm) contains well-defined laminations as well as massive fine silt layers and can be further split into two sub-

units. The lower sub-unit (12-2 cm) contains fine, grey, type 3a and b varves interspersed by two massive layers. The two 

massive light brown layers are both in core COL17-2, with core COL17-3 only containing the youngest of the two. Core 

COL17-3 contains a layer of indistinct laminations that cross-correlates with the oldest of the two COL17-2 massive layers 

suggesting the layers are composed of poorly preserved varves as opposed to single massive bed deposited rapidly. The other 320 

sub-unit (0-2 cm) contains thicker bright orange type 3b varves just below the sediment-water interface. Organic and 

biogenic (percent organics, biogenic silica, and green pigments as indicated by the index of RABD660) abundance increase 

to their highest levels in the top sub-section (Fig. 5, Appendix A Fig. A5), indicating increased lake productivity. Some 

heavy metals (Zn, Ag) also increase to their maximum levels (Appendix A Fig. A4). 
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 325 

Figure 4. Sediment, proxy, and varve profiles. (a) Lithostratigraphy and location of radiometric samples of cores 

COL17-3 and COL17-2. Images are true color. The base of COL17-3 is black because the oxidized red crust has been 

scraped off. MS = magnetic susceptibility, BSi = biogenic silica. Other proxies are shown in Appendix A A5. (b) 
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Microscopic thin section examples of varve types 1, 2, and 3. (c) Microscopic sub-lamination grain size analysis of 

varve types 1, 2, and 3b.  330 

 

Figure 5. Statistical analysis of proxy data from core COL17-3. (a) A constrained dendrogram with significant 

clusters representing the stratigraphic units (1-5) color-coded and applied to the sample depths used in the (b) 

Principal Component Analysis (PCA) biplot for reference. The first two principal components explain 48.9% of the 

variability. PC variables grouped by indicator type have different colors. The image of the core is presented for 335 

context. PCA loadings and scores can be found in Appendix A Fig. A7. 

4.2 Varve type description 

The examination of thin sections revealed complex microfacies that repeat within each lamination, indicative of a rhythmic 

change in the depositional environment. Moreover, comparison to radiometric measurements demonstrate this rhythmic 

layering is annual (Sect. 4.6). Therefore, the sediment is described here as true non-glacial clastic varves. Three main types 340 

of clastic varves are further sub-divided based on their internal structure (Fig. 4b). Type 1 is composed of typical couplets of 

silt and clay, type 2 couplets are interrupted by a third coarser grained sub-laminae, and type 3 couplets are inversely graded 

(Fig. 4c). 
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4.2.1 Type 1 

Type 1, most common in the deepest half of the sequence, consists of couplets identified by color and grain size. The bottom 345 

part, lithozone I, is characterized by ungraded or fining upward grading of light reddish-brown sediment with grains that 

measure 5-15 µm (Fig. 4c). The top part, lithozone II, is a fine-grained, dark-brown clay-rich cap with grains consistently < 5 

µm (Fig. 4c). The contact between lithozones I and II is generally gradual. 

4.2.2 Type 2 

Varve type 2 is most common in the top half of the sequence and consists of couplets (lithozone I and II) interrupted by 350 

coarser-grained (25-40 µm) matrix-supported sub-laminae (lithozone III). An erosional contact separates lithozone I from III, 

which is composed of plagioclase, quartz, and oxides, as identified under polarized microscope light. Like type 1 varves, 

type 2 varves are terminated with a dark reddish-brown clay cap (<5 µm, lithozone II). 

4.2.3 Type 3 

Type 3 varves are found exclusively at the topmost part of the sequence and can be sub-divided into varve type 3a and 3b. 355 

The deepest of the two, type 3a, is generally thicker and contains lithozone IV. Lithozone IV is characterized by a reverse 

grading of fine and dark grains at the bottom to coarse and light sediment at the top (Fig. 4c). Lithozone IV is followed by a 

thin and sometime non-existent lithozone II. Finally, at the topmost part of the cores is varve type 3b, similar in composition 

to varve type 3a. The difference is a strongly pronounced clay cap (lithozone II). Varve type 3 differs from type 2 because 

the coarsest grains appear gradually within lithozone IV rather than abruptly in lithozone III. Lithozone IV in varve type 3a 360 

and b also gradually change in color from dark to light. 

4.3 Varve counts, thicknesses, and quality 

Varve thicknesses, excluding varves of quality code 4, 5, and 6, are similar for each core (Table 1), with a combined mean 

and standard deviation of 0.5 ± 0.05 mm. Thick varves were found in COL17-3. Varve quality was generally higher at the 

top of the two cores (code 1) and fluctuated between moderate and poor quality throughout (Fig. 6). 365 

 

With symmetrical varveR, cores COL17-2 and COL17-3 contain a total of 2466 (highest probability density region: 2075-

2880) and 2380 (1999-2710) varves, respectively (Table 2, Fig. 7). This amounts to a cumulative uncertainty of -391/+414 

varves (-17/+15 %) for COL17-2 and -381/+330 (-17/+13 %) for COL17-3. With asymmetrical varveR, the mean total varve 

count increases by 300-400 varves to 2865 (1417-3923) for COL17-2 and 2740 (1394-3742) for COL17-3 although the 370 

cumulative uncertainty also increases to -1448/+1058 varves (-68/+31 %) and -1346/+1002 varves (-65/+31 %), 

respectively. 
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Table 1. Summary statistics for varve thicknesses based on the average of all observers’ measurements, excluding 

intervals of indistinct laminations. Total varve counts indicate output of symmetrical varveR. 

Core COL17-2 COL17-3 

Length of varved sequence (cm) 127 123 

Mean total varve count 2466 2380 

Median varve thickness (mm) 0.43 0.47 

Min. varve thickness (mm) 0.04 0.05 

Max. varve thickness (mm) 2.81 4.50 

Mean varve thickness (mm) 0.49 0.52 

Standard deviation varve thickness (mm) 0.28 0.29 

 375 

 

Figure 6. Observer measurements of varve thicknesses (lines) and quality (heatmaps) for cores COL17-2 and COL17-

3. 
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Table 2. Comparison of observer and core-specific varve ages based on symmetric and asymmetric varveR as well as 

the integrated model. HDR = highest probability density region.  

 COL17-2 COL17-3 

Symmetrical varveR Obs 1 Obs 2 Obs 3 Average Obs 1 Obs 2 Obs 3 Average 

Ensemble mean total count 

(varve years) 

2749 2171 2478 2466 2616 2103 2419 2380 

HDR (2.5-97.5%) 2614-

2911 

2037-

2320 

2351-

2617 

2033-

2847 

2498-

2739 

1958-

2249 

2283-

2543 

1999-2710 

Difference from average 

(%) 

+10.9 -12.7 +0.5 23.6* +9.4 -12.4 +1.6 21.8* 

Asymmetrical varveR 

Ensemble mean total count 

(varve years) 

3107 2590 2898 2865 2899 2506 2813 2740 

HDR (2.5-97.5%) 2015-

4182 

1233-

3733 

1756-

3864 

1417-

3923 

2161-

3717 

1227-

3595 

1699-

3811 

1394-3742 

Difference from average 

(%) 

+8.1 -10.1 +1.1 18.2* +5.6 -8.9 +2.6 14.5* 

Integrated model         

Ensemble mean total count 

(varve years) 

3470 3309 3227 3308 3095 3178 3138 3137 

HDR (2.5-97.5%) 3098-

4075 

3139-

3493 

3091-

3370 

3091-

3970 

2624-

3414 

3036-

3333 

2968-

3309 

2753-3375 

Difference from average 

(%) 

+4.8 0 -2.5 7.3* -1.3 +1.3 0 2.6* 

* ) Indicates the observer agreement as the range in the percentage difference from the mean 
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Figure 7. Comparison of original counts by (a and d) observer 1, (b and e) observer 2, and (c and f) observer 3 for 

dated core COL17-3. In the top row, the modeled varve counts are shown when using symmetrical (dotted envelop) 

and asymmetrical (shaded envelop) priors. For the symmetrical uncertainty, the median (dashed line) and the 97.5% 

(dotted region) high density regions are depicted. For the asymmetrical uncertainty, the median (darkest line), 75 385 

(darkest shaded region), and 97.5% (lightest shaded region) high density regions are depicted. In the bottom row, the 

integrated varve and radiometric models are shown. 

4.4 Observer-related uncertainty 

Three observers independently measured the varves of cores COL17-2 and COL17-3 in three separate transects (Table 2). 

The cumulative uncertainty of each observer to the mean was slightly higher for asymmetrical than symmetrical varveR. The 390 

uncertainty varied between 0.5 % (observer 3 COL17-2) and 12.7 % (observer 2 COL17-2). Asymmetrical varveR suggests 

more under-counting for observers 2 and 3 and more over-counting for observer 1 (Fig. 7). However, segment differences 
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are both positive and negative for all observers, indicating that systematic bias may not be an issue (Appendix A Table A1). 

The observer agreement is high for minimum thickness but low for maximum thickness (Appendix A Table A2). Observers 

disagreed on the number of indistinct sections, pointing to the subjectivity of varve delineations and confidence levels. 395 

Agreement on varve quality between observers is low (Fig. 6), indicating further subjectivity. Sections with thicker varves 

generally correlate across all observers such as between the varve years of 0-100 and 750-1000 in COL17-3 or between the 

varve years of 1000-1500 in COL17-2 (Fig. 6). 

4.5 Marker layer uncertainty 

As marker layers were assigned by each observer individually, they may not agree between observers. Thus, the varve count 400 

between marker layers, or segment count, in each core indicates a combination of inter-site variability due to the sediment 

quality and observer judgment (Appendix A Table A1). The largest segment difference was 110 % (172 years) for one 

observer which cannot be explained by marker layer misidentification alone. Instead, it is indicating that one observer 

identified more indistinct sections than the other observers for one of the sites. 

4.6 Independent validation 405 

The topmost part of core COL17-3 was dated with two independent radionuclide profiles. The 210Pb activity in Columbine 

Lake exhibits a gradual downcore decline that reaches equilibrium around 50 Bq kg−1 below 8 cm (Fig. 8a). The age at the 

base of the radionuclide measurements (12 cm) modeled by conventional methods for CRS and CFCS vary widely (Fig. 8c): 

CRS reaches 1883 ± 14 CE whereas CFCS comes to 1940 ± 13 CE. In comparison, the Bayesian solution has a wider, but 

likely more realistic uncertainty at 12 cm yielding a median age of 1784 CE with a 95 % highest density region of 1866-1679 410 

CE. The 137Cs activity shows a single peak at 3.25 cm (Figure 4.8B) which we attribute to the 1963 CE fallout from nuclear 

weapon testing. The peak’s depth appears younger by 20 to 30 years in the ages modeled from the lead profile: CRS 

indicates a year of 1996 CE, for CFCS it is 1998 CE, and 1984 CE for Plum. 

 

A total of six radiocarbon dates were used to model the age profile of Columbine Lake sediment (Table 3). Three dates were 415 

previously reported by Arcusa et al. (2019) (UCI 196901, UCI, 190157, and UCI 188317) for a mixture of small insects and 

plant fragments dated with a calibrated-age uncertainty ranging from 20 to 310 years. One new date was discarded as it 

returned a modern age (IonPlus 3528). Two more dates (IonPlus 3529 and IonPlus 3530) were measured on a mixture of 

plant fragments, bark, and aquatic insects due to the paucity of organic material found in the sediment. The uncertainty of the 

two new dates ranged from 72 to 76 years. The calibrated basal age at 124.5 cm is 2997 (95.4 % probability: 3073-2888) yr 420 

BP.  

 

To verify the annual nature of the couplets in Columbine Lake, we compare the topmost part of the varveR model with 

symmetrical priors to the 137Cs chronomarkers and the entire sequence to the radiocarbon profile (Fig. 8c and f). Cesium-137 
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is used for comparison because of its lower uncertainty, as opposed to the lead age models which are not in close agreement 425 

among themselves. The varve count and uncertainty by all three observers show a high agreement with the 137Cs peak, 

suggesting the couplets are annual. The whole sequence agrees generally well with the radiocarbon profile, particularly in 

the top 25 cm. Uncertainty surrounding the varve count increases downcore and the varve counts no longer overlap with the 

radiocarbon uncertainty to a depth of 60 cm. The basal radiocarbon age is older than the mean age estimated by both 

symmetrical and asymmetrical varveR by 600 and 250 years, respectively. The cumulative uncertainty of asymmetrical 430 

varveR encompasses the radiocarbon basal age, whereas the symmetrical varveR does not. Counts from observer 1 are 

systematically closer to the radiocarbon age estimate. The comparison with radiocarbon also serves to identify systematic 

biases which in the case of Columbine Lake varves tend towards under-counting when using symmetrical priors and possibly 

over-counting when using asymmetrical priors. 
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 435 

Figure 8. The chronology of Columbine Lake core COL17-3 based on (a) lead and (b) cesium measurements is 

seamlessly combined with (c, d) radiocarbon samples using the Bayesian models of Bacon and (e) Plum. Plum 

performs better than (c) conventional lead models of CFCS and CRS when compared to the 1963 137Cs fallout peak. 

The age-depth models counted by three observers and modeled by varveR with symmetrical priors agree well with 

the fallout peak indicating the rhythmic laminations are annual. Compared to (f) radiocarbon, underestimations in 440 

the varve counts appear to accumulate downcore.   
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Table 3. Uncalibrated and calibrated radiocarbon dates.  

Lab ID Deptha 

(cm) 

Material 14C Age  

(14C yr 

BP) 

Error  

(± 1sd 

yr) 

Fromb  

(cal. yr 

BP) 

Tob  

(cal. yr BP) 

UCI 196901  27.5 Insect wing 520 100 671 319 

UCI 190157 46.5 Bryophyte twig, Daphnia 

ephippia 

1510 310 2146 790 

IonPlus 

3527 

52.5 Daphnia ephippia, insect 

armour 

2045 69 2299 1798 

IonPlus 

3528c 

77.75 Daphnia ephippia, charred 

twig 

-935 60 - - 

IonPlus 

3529 

85.75 Daphnia ephippia, charcoal 2365 72 2710 2160 

IonPlus 

3530 

104.5 Daphnia ephippia, bark 2845 76 3170 2777 

UCI 188317 124.5 Bryophyte twig, Daphnia 

ephippia 

2875 20 3073 2888 

a Mid-point depth of 1-cm-thick sample 
b Two sigma range calibrated with IntCal20 curve 
c Age not used because returned modern445 
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4.7 Varve and radiometric data integrated model 

One integrated model was created for each observer. The integrated models updated the prior estimates of the counting 

uncertainties given the constraints from the independent age model and given each observer’s varve thicknesses, varve 

quality designation, and marker layer identification. The models sampled the probability space for 50,000 iterations and the 

burn-in occurred rapidly in <100 steps (Appendix A Figure A8). The integrated models result in similar cumulative 450 

uncertainty to symmetrical varveR but are much smaller than the uncertainty estimated by asymmetrical varveR (Fig. 7). The 

integrated models also converge more: the difference in the basal age between observers shrinks to 2.6 %, down from 21.8 % 

in the symmetrical varveR. The posterior likelihoods of over- and under-counting are larger than the symmetrical priors (Fig. 

2 compared to Appendix A Figure A9). They also varied with each varve quality code and with each observer (Appendix A 

Figure A9). The integrated models were more successful at correcting for over- and under-counting for observers 2 and 3 455 

than observer 1 as seen from the more symmetrical cumulative uncertainty for those observers (Appendix Fig, A8).   

 

Each observer’s integrated model was combined into one single integrated model, which hereafter is referred to as the 

‘integrated model’. The integrated model cumulative age extends by 3137 (3375-2753) varve years or 1120 (1358-736) BCE 

corresponding to a cumulative uncertainty of -384/+238 years (-13/+7 %) (Table 2). The cumulative mean age is older than 460 

symmetrical and asymmetrical varveR and the independent model. However, the HDR encapsulates the mean age of the 

radiometric mode (Fig. 9b). The greatest deviation between the independent model and the integrated model occurs between 

30 and 80 cm depth where indistinct sections are most frequent (Fig. 9b). The cumulative uncertainty in the integrated model 

is lower than asymmetrical varveR and similar to the symmetrical varveR.  

 465 

The posterior probabilities of over- and under-counting are higher than the prior expectations for all varve quality codes 

except for the likelihood of over-counting code 3 (Fig. 9a). The probability of over- and under-counting is similar for varve 

code 1, with a slight tendency for more under-counting (11 % vs 14 %). Furthermore, the probability of over- and under-

counting varve code 2 is the same (41 % vs 40 %). In contrast, the likelihood of over-counting varve code 3 is much smaller 

than the likelihood of under-counting (10 % vs 88 %). However, the distribution of the likelihood of over-counting is much 470 

wider than for other varve quality codes indicating this parameter has the least influence on the iterative improvements made 

by the Gibbs sampler. More under-counting appears with deeper sediment due to the dominance of poorly preserved 

sediment identified as varve quality code 3. Similar posterior probabilities resulted from re-running the integrated model 

with smaller asymmetrical uncertainty.  

https://doi.org/10.5194/gchron-2021-15
Preprint. Discussion started: 21 June 2021
c© Author(s) 2021. CC BY 4.0 License.



25 

 

 475 

Figure 9. Integrated varve-radiometric mode. (a) Over- and under-counting posterior distributions for the integrated 

model for each varve quality code (1, 2, 3). (b) Age-depth model comparison of the independent (Bacon) age model 

and the integrated model. OC: over-counting. UC: under-counting. Blue line indicates the mode of the posterior 

distributions. Red line indicates the mode of the prior distributions. 

4.8 Sedimentation rates 480 

The estimated sedimentation rate and its uncertainty varied by method and observer (Fig. 10a). Average rates are similar for 

all varve models with estimates of 0.51 mm/yr (HDR: 0.12-1.45) in symmetrical varveR, 0.44 mm/yr (HDR: 0.08-1.76) in 

asymmetrical varveR, and 0.42 mm/yr (HDR: 0.08-1.30) in the integrated model. In contrast, rates are doubled on average 

and higher more frequently in the independent model (0.83 mm/yr, 0.11-3.63) (Fig. 10). The uncertainty range in the varve 

models is half of that in the radiometric model. 485 

 

Sedimentation rates appear more stable throughout the late Holocene in the integrated model than for the radiometric model 

(Fig. 10b). Periods of higher sedimentation rates occur in the integrated model in the last 100 years, 400-500 BP and 2000-

2200 BP. Only the last 100 years of the integrated model shows a similar although subdued trend to the radiometric model. 

Furthermore, sedimentation rates are highly sensitive to the observer measurements with relatively little agreement 490 

(Appendix A Fig. A10). Those periods of agreement would show lower uncertainty, but uncertainty is relatively stable 

throughout the record (Fig. 10b). 
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Figure 10. Comparison of sedimentation rates. (a) Summary of sedimentation rates calculated with different models 

and separated by observer. (b) Late Holocene median (thick lines), 75% (darker shading) and 97.5% (lighter 495 

shading) highest probability density regions estimates of sedimentation rates calculated by the integrated (left) and 

radiometric (right) models for the dated core COL17-3. Note the medians of each observer are plotted in the left 

panel (thick lines). 
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5 Discussion 

5.1 Sources and quantification of uncertainty 500 

Varve chronologies, like all sedimentary profiles, contain uncertainties that stem from complex internal structures, poor 

quality, technical problems, rapid deposition events, and erosion (Ojala et al., 2012). Unlike other sedimentary chronologies, 

the errors are propagated by the observer(s) who somewhat subjectively determine what is a varve by “lumping” or 

“splitting” thicknesses. The sources of uncertainty and their quantification in Columbine Lake are now discussed in turn. 

5.1.1 Sediment microstructures 505 

The combination of the complex internal structure, shifting structures through time, and thinness of Columbine Lake varves 

was likely the most important source of uncertainty (Fig. 4b, Sect. 4.2). The complex sub-lamina internal structures the 

clastic varves are the primary cause of the large uncertainties in observer identification and delineation. It is also likely that 

laminations are missing due to erosion. Both would result in the under-counting that is particularly evident when comparing 

the symmetrical and asymmetrical varveR models to the independent chronology (Fig. 8). The systematic bias is corrected 510 

by the integrated model. Additionally, uncertainty in the varve delineation impacts the thickness measurements which 

propagates into the sedimentation rates (Fig. 10). At an average thickness of 0.5 ± 0.05 mm, the uncertainty surrounding the 

delineation of each varve is likely to be proportionately large because of the image quality and pixel resolution used in this 

study. Missing laminations and misinterpretation due to complex varve structures are common reasons for imprecision 

(Ojala et al., 2012). 515 

5.1.2 Sediment quality 

Closely intertwined with the sediment microstructures, sediment quality is likely the second-most important source of 

uncertainty in the chronology as seen from the prevalence of poor varve quality codes (2 and 3) (Fig. 6). About 78% of the 

sediment of COL17-2 and COL17-3 was identified as code 2, 3, and 4, all three designations indicating the observer was less 

than 80 % certain the thickness delineated was accurate. We report a cumulative uncertainty (-13/+7 %) in the integrated 520 

model that is on the higher end of values reported in the literature: a cumulative uncertainty of ±1-3 % is reported in the 

literature for well-preserved sediment (Ojala et al., 2012) and up to 15 % for unclear, partially disturbed varves in otherwise 

well-preserved varve sequences (Ojala and Tiljander, 2003; Tian et al., 2005). We also find high estimates of probabilities of 

over- and under-counting. These uncertainties are not always quantified in the literature, but Ojala and Tiljander (2003) 

report uncertainties within sections that reach 12 % and indicate more over-counting with depth. Additionally, Fortin et al. 525 

(2019) report over- and under-counting estimates of 21.9 and 14.5 %. We find large uncertainty estimates even for the best 

quality varves in Columbine Lake.  
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The presence of indistinctly laminated sections was frequently identified in both cores (Fig. 4). The timing of these segments 

is generally correlated across both cores, with exceptions, suggesting a combination of macro and micro scale processes. We 530 

accounted for this uncertainty through varve code 5 by emulating varved sediment. Through this analysis, we found that, on 

average, more sediment was identified as indistinctly laminated in COL17-2 (25 cm) than COL17-3 (11 cm). In more detail, 

the identification and thickness of these segments varied between observers suggesting differences in expert confidence and 

indicating high uncertainty may be surrounding the timing of these segments. As a result, the meaning of these indistinct 

segments should be interpreted with caution. 535 

5.1.3 Technical errors 

Technical errors in Columbine Lake varve chronology are likely limited to the sediment embedding and thin-sectioning 

process rather than the coring stage. All cores were remarkably similar (Appendix A Fig. A1), and layers could easily be 

correlated suggesting the coring process did not disturb the sediment. Although thin sections were overlapped to minimize 

sediment loss, the microscopic analysis revealed splits across the sediment in the middle of thin sections likely due to the 540 

embedding process. While infrequent, we accounted for the uncertainty associated with these gaps by using varve code 6, 

which tried to quantify the missing sediment. Varve code 6 added an average of 1.2 and 1.7 cm to COL17-3 and COL17-2, 

respectively. varveR provides a means of estimating this uncertainty. 

5.1.3 Rapid depositional events 

Errors associated with rapid depositional events were also likely limited to the topmost part of the record. Two thick layers 545 

were found in COL17-2 (1.2-2 and 8.5-9.7 cm) and one in COL17-3 (1.5-2.5 cm). The oldest of the two layers in COL17-2 

corresponds to a section of indistinct laminations in COL17-3 (7-8 cm). In situations where one core contains rapid 

depositional events, but the other does not, varveR attempts to correct for the missing varves by using information from both 

cores. In the case of the oldest layer in COL17-2, only partial information was available from the other core (COL17-3) 

because of the indistinct laminations. As a result, information was filled in by the varve emulator which assumed that varves 550 

should be present at that depth. This assumption is likely valid in this case but highlights the emulator should be used with 

caution. 

5.2 Varve formation mechanism 

Clastic varves generally form in lakes with (1) favorable catchment properties, lake bathymetry, and hydrology, (2) an 

absence of sediment mixing, and (3) a seasonally variable and significant flux of different components (Anderson et al., 555 

1985; Ojala et al., 2012; Zolitschka et al., 2015). Due to its remarkably clear water and popularity as a backcountry hiking 

destination, we could not obtain permitting to instrument Columbine lake to monitor sediment deposition. Therefore, our 

understanding of its non-glacial clastic varve formation mechanism is based on field observations, satellite imagery, and 

proxy data. Weather data from the region also inform this understanding.  
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 560 

Non-glacial clastic varves form in catchments containing fine-grained silt and clay material, where at least one inflow is 

present, and where the bathymetry is deep compared to the surface area (Ojala et al., 2000; Zolitschka et al., 2015). In 

Columbine Lake, most of the catchment (96%) is unvegetated (Arcusa et al., 2019). The production of siliciclastic fine-

grained material is likely dominated by the freeze-thaw cycle and hydrolysis. The eroded material is then entrained into the 

lake from the margins and via an inflow located to the northwest (Fig. 1). An older inflow is visible from satellite imagery 565 

just south of the modern inflow that may also activate during wetter periods. Upon entering the lake, coarser grains settle out 

first as the energy dissipates and the finer material reaches the coring site. The relatively deep pocket (27 m) where the 

coring site is located fits the description of a plain sediment depression (Ojala et al., 2000), where depth allows for anoxic 

conditions and continuous sedimentation and width prevents slope slumping and episodic turbidity currents (O’Sullivan, 

1983). 570 

 

The absence of sediment mixing, crucial for varve formation, generally relates to conditions that deter bioturbation 

(Anderson et al., 1985; Zolitschka et al., 2015). Perennial anoxia, or meromixis, or situations where oxygenation is 

infrequent enough to deter organism establishment are typical conditions. The deep plain depression where the coring sites 

are located likely contributed to this condition, although instrumental data of the water column is unavailable to check for 575 

anoxia. Moreover, acidic lake water (pH 5) may be an additional deterrent to benthic biota.  

 

The seasonal sediment transfer in an alpine non-glaciated catchment is usually related to the annual freeze-thaw cycle and 

runoff events (e.g. snowmelt and rainfall) (Zolitschka et al., 2015). Three types of clastic varves are found in Columbine 

Lake with distinct structure, and understanding their formation requires separate mechanisms. Clastic varves are typically 580 

composed of a coarse-grained lower and a fine-grained upper lamina produced by a nival discharge followed by winter 

settling (Zolitschka et al., 2015). Such a progression is found in Columbine Lake’s type 1 varves, but not type 2 nor 3. Like  

previous studies (Cuven et al., 2010), we interpret the type 1 varves silt base (lithozone I) as deposition during the snowmelt 

season and the clay top (lithozone II) to the settling of fines under ice cover. Two mechanisms can produce the structure of 

lithozone I. One possibility is that in the first weeks of snowmelt, the frozen ground and riverbanks inhibit sediment 585 

transportation. The resulting stream with low sediment concentration produces overflow conditions. Once in the distal basin, 

the sediment settles rapidly in ungraded or fining upward sequences (Francus et al., 2008). Alternatively, the initial melt 

release may occur before the stratification of the lake (Palmer et al., 2019). Either way, we interpret type 1 lithozone I as 

low-energy, low sediment concentration, nival discharge. The gradual contact between the lithozone I and II may indicate a 

slow shut down of turbulence by a slow freeze over and a prolonged period of settling (Desloges, 1994). The sharp contact 590 

between lithozone II and the following lithozone I possibly represents the erosive waxing head of the flow, even if the flow 

is low-energy (Mulder et al., 2001).  
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In contrast, type 2 varves are composed of subparts that do not follow the typical silt-to-clay progression. The transition from 

lithozone I interpreted as low energy nival discharge to lithozone II that is interpreted as winter settling is often interrupted 595 

by lithozone III, a coarse sub-lamina. The combination of lithozone I and III gives the impression of a single sub-laminae 

with reverse grading. However, because an erosive contact is sometimes evident between lithozone I and III, this 

interpretation is likely ruled out. Instead, a second possible explanation is a high-energy event occurring during or after snow 

melt but before freezing over. The San Juan Mountains experience a bimodal precipitation regime with abundant snow in the 

winter followed by violent summer thunderstorms. These short-lived summer events may have the energy to transport 600 

coarser material than during the nival snowmelt. As identified in other settings (Cuven et al., 2010), we interpret lithozone 

III as discharge events produced by high-intensity rainfall occurring during or after the spring melt. 

 

In varve type 3, lithozone I is replaced with lithozone IV. Rather than a coarse event interruption like lithozone III, lithozone 

IV is composed of a single lamina with an inversely graded transition from a dark and fine bottom to light and coarse top 605 

(Fig. 4c). Inversely graded sediment has only rarely been described in lake sediment (Desloges, 1994; Francus et al., 2008; 

Guyard et al., 2007; Lewis et al., 2010; Palmer et al., 2019). The primary suggested deposition mechanism is the increasing 

underflow velocity of a hyperpycnal flow during the initiation of a flood (Gilli et al., 2013; Lamb and Mohrig, 2009; Mulder 

et al., 2001). This depletive (slower velocity with distance) waxing (increasing velocity with time) flow generated by the 

steadily increasing discharge (rising limb) at a river mouth (Kneller, 1995) has been attributed to secondary pulses of 610 

sediment in the summer (Desloges, 1994), variable flow from precipitation events (Lewis et al., 2010), and lateral flow of the 

sediment to the core site (Palmer et al., 2019). Although possible, this mechanism would require specific discharge rates and 

sediment concentrations to produce a current that increases in velocity to a critical discharge rate and is denser than the lake 

water in which it enters (Mulder and Syvitski, 1995).  

 615 

An alternative hypothesis to explain the inversely graded sediment is specific to Columbine Lake and builds on the evidence 

of dust-sized sediment in the coarse top of lithozone IV (particle size 5-25 µm). A previous study of Columbine Lake 

demonstrated that mineral dust transported from the Southwestern deserts make up 30-57% of the sediment (Arcusa et al., 

2019). As the mode grain size of the dust (22 µm; Neff et al., 2008; Routson et al., 2016) falls within the grain size range of 

the top of lithozone IV (Fig. 4c) and dust is regularly found settled on snow in the catchment and on the frozen lake surface 620 

(Appendix A Fig. A11), it is conceivable that the coarse top of lithozone IV would be composed of dust brought into the lake 

in one or a combination of three ways. First, dust can accumulate on the lake ice cover and be released as the ice melts, and 

this may be later than the onset of snowmelt from the catchment that would create type 1 varves. Second, as snow melts 

around the dust particles deposited in the catchment, the concentration of the dust left behind increases (Conway et al., 1996; 

Li et al., 2013). A precipitation event late in the nival season could eventually wash the dust into the lake creating the 625 

appearance of inverse grading. Third, the dust-sized material is not dust but catchment material the size of dust brought in 

from lake margins or the inlet late or at the peak of the nival season. Varve formation due to aeolian dust has been 
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documented previously (Zhai et al., 2006), but whether the inversely graded subparts are due to additions of dust and/or 

hyperpycnites is unclear from the evidence currently available. 

5.3 Varve formation through the Late Holocene 630 

Three transitions in the varve formation are evident from the stratigraphy and varve analysis. These transitions are either 

abrupt or gradual and likely reflect important changes in the catchment conditions and/or climate. These transitions will be 

discussed in turn, from oldest to youngest. Ages and their highest probability density regions (2.5-97.5 %) are indicated from 

the integrated chronology. 

 635 

The most abrupt transition in the sequence occurs around 1120 (HDR: 1358-736) BCE (3137, 2753-3375 BP) with the onset 

of varve formation (Fig. 4) at the contact between units 5 and 4. The processes that can create and sustain conditions 

necessary for varve formation relate to the physical and chemical properties of the lake water that produce anoxic conditions. 

These factors include temperature, wind exposure, increased production, and decreased lithogenic influx (Boehrer et al., 

2017; Butz et al., 2017; Makri et al., 2020). In the case of Columbine Lake, lithogenic elements (Ti, Ba, Rb, K) decrease, and 640 

Mn/Fe temporarily increases at the transition and is low thereafter (Appendix A Figures A4 and A5). When uncorrelated 

with detrital elements, as is the case here, high Mn/Fe has been interpreted as high dissolved oxygen concentration in the 

water column (Naeher et al., 2013). The cause for this momentary increase in oxic conditions is unclear but marks the 

beginning of the varve formation. Unit 4 directly follows this transition and redox conditions are consistently indicated by 

the PCA analysis (Fig. 5b).   645 

 

The second most evident transition occurs around 60-50 cm depth in COL17-3 (as deep as 72 cm in COL17-2) 

corresponding to 419-882 C.E. in the integrated varve chronology model with the gradual shift from varve type 1 (unit 3) to 

2 (unit 2) (Fig. 4 and Fig. 5). Whereas the asynchronicity of the transition in the cores suggests site specific causes (e.g. 

processes that oppose varve formation), the fact that both cores eventually transition indicates a catchment wide influence. 650 

The main distinction of varve type 2 is the presence of sub-laminae that are interpreted as higher-energy rainfall events. The 

position of these laminae within the lamination set suggests the precipitation event occurred late in the nival season, in 

summer, or in the fall but before the winter settling commenced. The timing of the transition corresponds broadly with the 

Dark Ages Cold Period (Helama et al., 2017) generally characterized by increased moisture in the southern Rocky 

Mountains (Rodysill et al., 2018; Routson et al., 2011) although a period of drought is recorded between 600-700 C.E. at 655 

Summitville, 110 km to the south east (Routson et al., 2011). Due to the asynchronicity the timing of the transition cannot be 

ascertained, and the climatic cause should be interpreted with caution. 

 

The final transition occurs at a depth of 7 cm corresponding to an age of 1874 (1844-1902) C.E. The difference between unit 

2 and 1 in the PCA analysis is striking (Fig. 5), with lithogenic inputs distinguishing unit 1 from unit 2. The transition from 660 
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unit 2 to 1 appears to occur after the deposition of the deepest massive layer (also a section of indistinct varves in COL17-3). 

As discussed in section 3.2.2, a large proportion of the sediment appears to be dust-sized sediment (Arcusa et al., 2019). 

Additionally, the last 150 years coincide with a 1.7-fold increase in dust deposition compared to pre-industrial times in the 

San Juan Mountains (Routson et al., 2019), with two peaks in deposition occurring around 1880 C.E. and 1950 C.E. as seen 

from previous work at Columbine Lake (Arcusa et al., 2019) as well as other lakes in the region (Neff et al., 2008; Routson 665 

et al., 2019, 2016). These peaks correspond to the timing of the massive layers: 1973 (1959-1987) C.E. and 1851 (1824-

1876) C.E. It is thus conceivable that the additional dust may have disrupted the varve formation process in the massive layer 

and may have altered the varve formation mechanism subsequently. 

 

A final hypothesis for the transition to varve type 3 relates to an increasing, even if slight, human impact on the catchment as 670 

indicated by two structures and other evidence of grazing and mining activity (Fig. 5). Although the catchment is not 

accessible by road, a rock shelter was constructed on the south shore. The high alpine meadows have been subject to sheep 

and cattle grazing since the late middle to late 1800s (Baker, 2020) coinciding with the increased lake productivity indicators 

seen in unit 1 (Fig. 5). The increased productivity and organic content could explain the thicker varves but not the reverse 

grading. Secondly, a 2-m-high dam was constructed at the outlet for Mill Creek presumably sometime around the turn of the 675 

20th century, to raise the lake water level and secure water rights for a downstream mine (pers. comm., Forest Service at San 

Juan National Forest). This water level increase and fluctuation could have increased erosion and reworking of hillslope 

sediment. Finally, mining became increasingly prevalent in the area from the 1800s (Blair and Bracksieck, 2011), although 

we did not find evidence for mining within the catchment. Mining indicators (e.g. Guyard et al., 2007) such as silver and 

zinc become abundant in unit 1, and the increase in heavy metals could have changed both lake productivity and signal a 680 

change in lithogenic input. Whether the unique varve type 3 reflects the input of dust or sediment from shoreline or hillslope 

sources, or changes in lake productivity, or all these factors together, the change occurs in the industrial period and is likely 

related to human activities within and beyond the catchment. 

5.4 Integrating varves with radiometry 

Radiometric (14C, 210Pb, 137Cs) profiles are frequently used to validate varve chronologies (Ojala et al., 2012; Zolitschka et 685 

al., 2015); however, ages derived from radiometric profiles are generally systematically older than the varve chronology for 

various reasons (Bonk et al., 2015; Tian et al., 2005; Żarczyński et al., 2018). As the varveR output for Columbine Lake 

consistently shows this divergence (Fig. 8f) we now discuss the merits and pitfalls of integrating the varve chronology with 

the independent radiometric age-depth model by exploring three possibilities: (1) the varveR model is accurate and the 

calibrated 14C dates are older than the true sediment ages; (2) the calibrated 14C dates are accurate and the varveR model 690 

underestimates the true sediment ages; or (3) both the model and the calibrated 14C dates have unknown systematic biases.  
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Radiocarbon dating in high-elevation lake sediments is often challenged by a paucity of adequate organic material (e.g. 

Arcusa et al., 2020; Schneider et al., 2018). To gather enough material for a standard graphite-based AMS measurement, the 

radiocarbon samples in this study were composed of a mixture of aquatic and terrestrial material (Table 3). Samples of 695 

mixed composition have been shown to yield ages that are generally too old (Zander et al., 2019). Both aquatic and 

terrestrial macrofossils are associated with processes that can increase their apparent age. For example, aquatic organisms are 

subject to a hardwater effect due to dissolved inorganic carbon synthetization (Geyh et al., 1998, 1999), whereas terrestrial 

material might be significantly older than the enclosing sediment because of the lags between growth and deposition (Bonk 

et al., 2015). At least one of the seven radiocarbon dates is likely too old (IonPlus 3527), exceeding Bacon’s 95  % 700 

uncertainty band (Fig. 8f). A leave-one-out cross-validation analysis (e.g. Parnell et al., 2011) could help identify other 

outliers but the analysis was not undertaken in this study. Despite the potential for other samples being too old, the integrated 

chronology overlaps with all other radiocarbon samples (Fig. 9b), and the divergence between symmetrical varveR and the 

radiometric independent model appear to increase with depth (Fig. 8f), both of which support the accuracy of the varve-

based age model. 705 

 

A younger varve chronology compared to the independent model would indicate varve under-counting. Varve count 

underestimation is recognized in sediment with poor varve appearance (Tian et al., 2005) and depending on the method used 

in building the chronology (Żarczyński et al., 2018). As discussed in section 5.1, both the sediment microstructures and the 

quality of the varve appearance are important sources of uncertainty in Columbine Lake: varves are thin, complex, and their 710 

formation mechanism appears to change through time. Additionally, the varve emulator is unlikely to have over-estimated 

the varve counts given the relatively stable sedimentation rate through time. Although observer bias does not appear 

important, since age deviations from the mean are both positive and negative, and for the reasons listed above, it is most 

likely that systematic under-counting is prevalent. The integrated model satisfies all available evidence and is more accurate 

than relying on a single chronological method. 715 

6 Conclusion 

A multi-core, multi-observer varve chronology extending 3137 (-13/+7 %) years was produced from thin and complex 

varves from high-elevation Columbine Lake, Colorado. A varve formation model was proposed and was demonstrated to 

shift through time most likely due to climate in pre-industrial times and human influence within the catchment and on 

regional dust emissions in industrial times. A Bayesian model was used to quantify the uncertainty associated with the 720 

quality of the varve appearance, the indistinct and intermittent varves, technical issues, observer judgement and depositional 

events. The varve chronology was integrated with an independent radiometric (14C, 210Pb, and 137Cs) age-depth model to 

estimate the probabilities of over- and under-counting for different varve quality codes, reduce cumulative uncertainty, and 

correct for systematic under-counting.  
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 725 

This approach to building a varve chronology goes beyond the estimation of age uncertainty as it also constrains the 

uncertainty around varve thickness and thus sedimentation rates. The integration produced estimates of sedimentation rate 

that combine short-term as well as some long-term information, native to the varve and the radiometric chronologies. 

Furthermore, the approach offers an ensemble of plausible sedimentation rates from which flux and its uncertainty can be 

calculated. This work not only establishes the chronology and sedimentation rates of Columbine Lake sediment to anchor 730 

future research at the site, it also demonstrates the potential for expanding high resolution reconstructions even to sites with 

indistinct and intermittent varves. 
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7 Appendix A 

Table A1. Difference in counts between marker layers between cores for each observer. Note that marker layers do 

not cross-coordinate between observers, only between cores for each observer. Difference is calculated as COL172-735 

COL17-3. 

 

Marker Layer COL172 COL173 Observer Difference (years) Difference (%) 

1 699 660 1 39 5.7 

2 275 308 1 -33 -11.3 

3 951 1230 1 -279 -25.6 

4 439 321 1 118 31.1 

5 9 8 2 1 11.8 

6 124 74 2 50 50.5 

7 214 187 2 27 13.5 

8 41 91 2 -50 -75.8 

9 203 165 2 38 20.7 

10 442 411 2 31 7.3 

11 180 271 2 -91 -40.4 

12 69 182 2 -113 -90.0 

13 206 221 2 -15 -7.0 

14 252 192 2 60 27.0 

15 128 145 2 -17 -12.5 

16 9 7 3 2 25.0 

17 34 25 3 9 30.5 

18 46 30 3 16 42.1 

19 56 21 3 35 90.9 

20 212 177 3 35 18.0 

21 43 99 3 -56 -78.9 

22 185 169 3 16 9.0 

23 240 256 3 -16 -6.5 

24 148 115 3 33 25.1 

25 59 70 3 -11 -17.1 

26 183 266 3 -83 -37.0 

27 70 242 3 -172 -110.3 

28 80 156 3 -76 -64.4 

29 106 155 3 -49 -37.5 

30 212 193 3 19 9.4 

31 176 139 3 37 23.5 
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Table A2. Observer- and core-specific varve sequence statistics of thickness and counts. Varve quality codes 4, 5, and 740 

6 are excluded from the analysis except to calculate the cumulative length of indistinct sections. All units are 

millimetres unless otherwise noted. 

 

Core name COL17-2 COL17-3 

 Obs 1 Obs 2 Obs 3  Obs 1 Obs 2 Obs 3  

Minimum thickness  0.05      0.01      0.07       0.03      0.02      0.1       

Maximum thickness 2.32      3.64      2.46       4.94      1.69      6.86       

Median thickness  0.39    0.48    0.41     0.44    0.51   0.46     

Mean thickness 0.43        0.56        0.48        0.48        0.56      0.51         

SD thickness 0.23 0.35 0.26  0.24 0.25 0.37  

Total indistinct section length 40 10 108  167 57 112  

 

 745 

 
Fig. A1. Tie points from three Columbine Lake cores. (A) shows COL-17-2 shown on the far right, COL-17-3 in the 

middle, and COL-16-1 on the left. The top of cores COL-17-3 and COL-17-2 are shown in (B). (C) is a section of the 

middle of all three cores with matching laminations marked with pins. Image credit: Wiman, C. (2019). Late 

Holocene hydroclimate and productivity in varved sediment at Columbine Lake, Colorado (Master thesis, Northern 750 

Arizona University). 
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Fig. A2. Examples of varves appearance for each varve code.  
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 755 

Fig. A3. Comparison of varve thicknesses from varved sections (codes 1, 2, and 3) between COL17-2 and COL17-3. 
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Fig. A4. X-Ray Fluorescence (XRF) elements measured on core COL17-3. Ratio Mn/Fe is normalized to Ti counts.  
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 760 
Fig. A5. Proxy dataset measured on core COL17-3 and used for the statistical analysis. (A) Ratios RABD660, 

RABD615 and ChlB are indicators of productivity. Ratios minPeak and R570/630 are indicators of clay minerals. (C) 

Destructive analyses including LOI (organic, water and mineral content), biogenic silica and wet and dry bulk 

density. (C) Magnetic susceptibility. (D) Grain size. 
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 765 
Fig. A6. Spearman’s Rank correlation plot. 
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Fig. A7. (A) Broken stick model used to identify the significant principal components. Although three components are 

significant and explain 63.3 % of the variability, only components 1 and 2 are discussed in the manuscript. (B-C) 

Loadings and (D) scores for components 1 and 2.  770 
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Fig. A8. Integrated model diagnostics. Objective function output value (left) and counting probabilities (right) for 

each iteration for observers 1 (top), 2 (middle), 3 (bottom). OC = over-counting. UC = under-counting. Number that 

follows OC/UC indicates the varve quality code. 775 
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Fig. A9. Posterior probabilities of over- and under-counting for each observer for core COL17-3. Comparison 

between independent and integrated age-depth model. OC: over-counting. UC: under-counting. Code 1-3 indicate the 

varve quality codes 1, 2, 3.  780 
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Fig. A10. Sedimentation rates for each observer for symmetrical varveR, asymmetrical varveR and the integrated 

models.  
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Fig. A11. Dust deposition in Columbine Lake catchment and frozen surface is frequently visible as a light brown tint 785 

8 Code and data availability 

on the snow. Image from (a) June 2012, and (b) June 2014. Map data: © Google Earth.  
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Code for the original VarveR model can be found at 10.5281/zenodo.4733326. Code for the varve and radiometric model 

integration can be found at 10.5281/zenodo.4744872. Datasets containing radiometric measurements from Columbine Lake 

can be found at https://doi.org/10.25384/SAGE.9879209.v1. Datasets of varve delineations can be found at 790 

10.6084/m9.figshare.14251400. Datasets necessary to run the code (LiPD file and Bacon output file) can be found at 

10.6084/m9.figshare.14417999. Dataset containing proxy measurements produced in this study can be found at 

10.6084/m9.figshare.14265644 for the review process and will be uploaded to NOAA World Data Service for 

Paleoclimatology upon publication.  

9 Author contribution 795 

SHA and NPM conceptualized the study. CW sampled and embedded the sediments, SHA, CW, and SP measured varves, 

and SEM measured lead samples. MAL ran the Plum-Bacon model. SHA and NPM created and modified the Bayesian 

models, and SHA ran the models. SHA visualized the data and drafted the original manuscript. All authors contributed to the 

review and editing.  

10 Competing interests 800 

The authors declare that they have no conflict of interest. 

11 Acknowledgments 

This research was funded by Bob and Judi Braudy and we are grateful for their support. MAL was partially founded by 

CONACYT CB-2016-01-284451 and COVID19 312772 grants and a RDCOMM grant. We thank D Buscombe for letting us 

use the bathymetric equipment, RS Anderson for the identification of macrofossils for 14C dating, K Whitacre for lab 805 

assistance, Rosalind Wu from the San Juan National Forest Service for working with us to obtain permits for sampling 

Columbine Lake, C Routson and D Kaufman for helpful feedback on the manuscript, Quality Thin Sections for producing 

the thin sections, and C Ebert for conducting 14C dating at IonPlus in Zurich. We thank E Yackulic, C Mogen, W Wiman, C 

Routson, A Wong, A Platt, J Chaffeur, E Broadman, and M Caron for the help in the field. 

12 References 810 

Anderson, B. R. Y., Dean, W. E., Bradbury, P. and Love, D.: Meromictic Lakes and Varved Sediments, 19 [online] 

Available from: https://pubs.usgs.gov/bul/1607/report.pdf, 1985. 

https://doi.org/10.5194/gchron-2021-15
Preprint. Discussion started: 21 June 2021
c© Author(s) 2021. CC BY 4.0 License.



48 

 

Anderson, R. S., Smith, S. J., Lynch, A. M. and Geils, B. W.: The pollen record of a 20th century spruce beetle 

(Dendroctonus rufipennis) outbreak in a Colorado subalpine forest, USA, For. Ecol. Manage., 260(4), 448–455, 

doi:10.1016/j.foreco.2010.05.001, 2010. 815 

Appleby, P.: Chronostratigraphic techniques in recent sediments, in Tracking Environmental Change Using Lake Sediments. 

Volume 1, edited by W. Last and J. P. Smol, pp. 171–203, Kluwer Academic Publishers, Dordrecht., 2001. 

Appleby, P. G. and Oldfield, F.: The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to 

the sediment, CATENA, 5(1), 1–8, doi:10.1016/S0341-8162(78)80002-2, 1978. 

Aquino-López, M. A., Blaauw, M., Christen, J. A. and Sanderson, N. K.: Bayesian Analysis of 210Pb Dating, J. Agric. Biol. 820 

Environ. Stat., 23, 317–333, doi:10.1007/s13253-018-0328-7, 2018. 

Arcusa, S. H., McKay, N. P., Routson, C. C. and Munoz, S. E.: Dust-drought interactions over the last 15,000 years: A 

network of lake sediment records from the San Juan Mountains, Colorado, The Holocene, doi:10.1177/0959683619875192, 

2019. 

Arcusa, S. H., Schneider, T., Mosquera, P. V., Vogel, H., Kaufman, D. S., Szidat, S. and Grosjean, M.: Late Holocene 825 

tephrostratigraphy from Cajas National Park, southern Ecuador, Andean Geol., 47(3), 508–528, 

doi:http://dx.doi.org/10.5027/andgeoV47n3-3301, 2020. 

Baker, W. L.: Variable forest structure and fire reconstructed across historical ponderosa pine and mixed conifer landscapes 

of the San Juan Mountains, Colorado, Land, 9(1), 1–35, doi:10.3390/land9010003, 2020. 

Blaauw, M. and Christen, J. A.: Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian 830 

Anal., 6(3), 457–474, doi:10.1214/11-BA618, 2011. 

Blair, R. and Bracksieck, G.: The Eastern San Juan Mountains., edited by R. Blair and G. Bracksieck, University Press of 

Colorado., 2011. 

Blockley, S. P. E., Ramsey, C. B., Lane, C. S. and Lotter, A. F.: Improved age modelling approaches as exemplified by the 

revised chronology for the Central European varved lake Soppensee, Quat. Sci. Rev., 27(1–2), 61–71, 835 

doi:10.1016/j.quascirev.2007.01.018, 2008. 

Boers, N., Goswami, B. and Ghil, M.: A complete representation of uncertainties in layer-counted paleoclimatic archives, 

Clim. Past, 13(9), 1169–1190, doi:10.5194/cp-13-1169-2017, 2017. 

Bonk, A., Tylmann, W., Goslar, T., Wacnik, A. and Grosjean, M.: Comparing varve counting and 14C-AMS chronologies in 

the sediments of lake Żabińskie, Northeastern Poland: Implications for accurate 14C dating of lake sediments, 840 

Geochronometria, 42, 159–171, 2015. 

Brauer, A., Hajdas, I., Blockley, S. P. E., Bronk Ramsey, C., Christl, M., Ivy-Ochs, S., Moseley, G. E., Nowaczyk, N. N., 

Rasmussen, S. O., Roberts, H. M., Spötl, C., Staff, R. A. and Svensson, A.: The importance of independent chronology in 

integrating records of past climate change for the 60-8ka INTIMATE time interval, Quat. Sci. Rev., 106, 47–66, 

doi:10.1016/j.quascirev.2014.07.006, 2014. 845 

https://doi.org/10.5194/gchron-2021-15
Preprint. Discussion started: 21 June 2021
c© Author(s) 2021. CC BY 4.0 License.



49 

 

Bronk Ramsey, C.: Radiocarbon calibration and analysis of stratigraphy: the OxCal program, Radiocarbon, 37(2), 425–430, 

1995. 

Bruel, R. and Sabatier, P.: serac: a R package for ShortlivEd RAdionuclide Chronology of recent sediment cores, 1–38, 

doi:10.31223/osf.io/f4yma, 2020. 

Buck, C. E., Higham, T. F. G. and Lowe, D. J.: Bayesian tools for tephrochronology, The Holocene, 13(5), 639–647, 850 

doi:10.1191/0959683603hl652ft, 2003. 

Butz, C., Grosjean, M., Poraj-Górska, A., Enters, D., Tylmann, W. and Butz, C.: Sedimentary Bacteriopheophytin a as an 

indicator of meromixis in varved lake sediments of Lake Jaczno , north-east Poland , AD 1891 – 2010, Glob. Planet. Change, 

144, 1–26, doi:10.1016/j.gloplacha.2016.07.012, 2016. 

Butz, C., Grosjean, M., Goslar, T. and Tylmann, W.: Hyperspectral imaging of sedimentary bacterial pigments: a 1700-year 855 

history of meromixis from varved Lake Jaczno, northeast Poland, J. Paleolimnol., 58(1), 57–72, doi:10.1007/s10933-017-

9955-1, 2017. 

Carrara, P.: Deglaciation and postglacial treeline fluctuation in the northern San Juan Mountains, Colorado, U.S. Geol. Soc. 

Prof. Pap. 1782, 1–48 [online] Available from: http://pubs.usgs.gov/pp/1782/, 2011. 

Conway, H., Gades, A. and Raymond, C. F.: Albedo of dirty snow during conditions of melt, Water Resour. Res., 32(6), 860 

1713–1718, 1996. 

Cuven, S., Francus, P. and Lamoureux, S. F.: Estimation of grain size variability with micro X-ray fluorescence in laminated 

lacustrine sediments, Cape Bounty, Canadian High Arctic, J. Paleolimnol., 44(3), 803–817, doi:10.1007/s10933-010-9453-1, 

2010. 

Dean, W. J.: Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on 865 

ignition: comparison with other methods, J. Sediment. Petrol., 44(I), 242–248, doi:10.1128/JCM.01030-15, 1974. 

Desloges, J. R.: Varve deposition and the sediment yield record at three small lakes of the southern Canadian Cordillera, 

Arct. Alp. Res., 26(2), 130–140, doi:10.2307/1551776, 1994. 

Dräger, N., Theuerkauf, M., Szeroczyńska, K., Wulf, S., Tjallingii, R., Plessen, B., Kienel, U. and Brauer, A.: Varve 

microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See 870 

(NE Germany), The Holocene, 27(3), 450–464, doi:10.1177/0959683616660173, 2017. 

Fortin, D., Praet, N., McKay, N. P., Kaufman, D. S., Jensen, B. J. L., Haeussler, P. J., Buchanan, C. and De Batist, M.: New 

approach to assessing age uncertainties – The 2300-year varve chronology from Eklutna Lake, Alaska (USA), Quat. Sci. 

Rev., 203, 90–101, doi:10.1016/j.quascirev.2018.10.018, 2019. 

Francus, P., Bradley, R. S., Lewis, T., Abbott, M., Retelle, M. and Stoner, J. S.: Limnological and sedimentary processes at 875 

Sawtooth Lake, Canadian High Arctic, and their influence on varve formation, J. Paleolimnol., 40(3), 963–985, 

doi:10.1007/s10933-008-9210-x, 2008. 

Geyh, M., Schotterer, U. and Grosjean, M.: Temporal changes of the 14C reservoir effect in lakes, Radiocarbon, 40(2), 921–

931, 1998. 

https://doi.org/10.5194/gchron-2021-15
Preprint. Discussion started: 21 June 2021
c© Author(s) 2021. CC BY 4.0 License.



50 

 

Geyh, M. A., Grosjean, M., Núñez, L. and Schotterer, U.: Radiocarbon reservoir effect and the timing of the late-880 

glacial/early Holocene humid phase in the Atacama Desert (Northern Chile), Quat. Res., 52(2), 143–153, 

doi:10.1006/qres.1999.2060, 1999. 

Gilli, A., Anselmetti, F. S., Glur, L. and Wirth, S. B.: Lake Sediments as Archives of Recurrence Rates and Intensities of 

Past Flood Events, in Dating Torrential Processes on Fans and Cones, edited by M. Schneuwly-Bollschweiler, pp. 225–242, 

Springer Science+Business Media, Dordrecht., 2013. 885 

Guyard, H., Chapron, E., St-Onge, G., Anselmetti, F. S., Arnaud, F., Magand, O., Francus, P. and Res, M.-A.: High-altitude 

varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps 

(Lake Bramant, Grandes Rousses Massif), Quat. Sci. Rev., 26, 2644–2660, doi:10.1016/j.quascirev.2007.07.007, 2007. 

Helama, S., Jones, P. D. and Briffa, K. R.: Dark Ages Cold Period: A literature review and directions for future research, 

Holocene, 27(10), 1600–1606, doi:10.1177/0959683617693898, 2017. 890 

Hughen, K. A., Southon, J. R., Bertrand, C. J. H., Frantz, B. and Zermeño, P.: Cariaco basin calibration update: Revisions to 

calendar and 14C chronologies for core PL07-58PC, Radiocarbon, 46(3), 1161–1187, doi:10.1017/S0033822200033075, 

2004. 

Juggins, S.: rioja: Analysis of Quaternary Science Data, [online] Available from: https://cran.r-project.org/package=rioja, 

2020. 895 

Kneller, B.: Beyond the turbidite paradigm: Physical models for deposition of turbidites and their implications for reservoir 

prediction, Geol. Soc. Spec. Publ., 94(December), 31–49, doi:10.1144/GSL.SP.1995.094.01.04, 1995. 

Krishnaswamy, S., Lal, D., Martin, J. M. and Meybeck, M.: Geochronology of lake sediments, Earth Planet. Sci. Lett., 11(1–

5), 407–414, doi:10.1016/0012-821X(71)90202-0, 1971. 

Lamb, M. P. and Mohrig, D.: Do hyperpycnal-flow deposits record river-flood dynamics? Geology, 37(12), 1067–1070, 900 

doi:10.1130/G30286A.1, 2009. 

Lamoureux, S. F.: Embedding unfrozen lake sediments for thin section preparation, J. Paleolimnol., 10(2), 141–146, 1994. 

Lamoureux, S.F.. Varve chronology techniques. In: Last, W.M., Smol, J.P. (Eds.), Developments in Paleoenvironmental 

Research (DPER), Tracking Environ- mental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological 

Techniques, vol. 1. Kluwer, Dordrecht, pp. 247e260. http://dx.doi.org/10. 1007/0-306-47669-X_11, 2001. 905 

Le, S., Josse, J. and Husson, F.: FactoMineR: An R package for multivariate analysis, J. Stat. Softw., 25(1), 1–18, 2008. 

Lewis, T., Francus, P., Bradley, R. S. and Kanamaru, K.: An automated system for the statistical analysis of sediment texture 

and structure at the micro scale, Comput. Geosci., 36(10), 1374–1383, doi:10.1016/j.cageo.2010.03.018, 2010. 

Li, J., Okin, G. S., McKenzie Skiles, S. and Painter, T. H.: Relating variation of dust on snow to bare soil dynamics in the 

western United States, Environ. Res. Lett., 8(4), doi:10.1088/1748-9326/8/4/044054, 2013. 910 

Lipman, P. W. and Mcintosh, W. C.: Tertiary Volcanism in the Eastern San Juan Mountains, in The Eastern San Juan 

Mountains: Their Geology, Ecology, Human History, edited by R. Blair and G. Bracksieck, University Press of Colorado., 

2011. 

https://doi.org/10.5194/gchron-2021-15
Preprint. Discussion started: 21 June 2021
c© Author(s) 2021. CC BY 4.0 License.



51 

 

Makri, S., Rey, F., Gobet, E., Gilli, A., Tinner, W. and Grosjean, M.: Early human impact in a 15,000-year high-resolution 

hyperspectral imaging record of paleoproduction and anoxia from a varved lake in Switzerland, Quat. Sci. Rev., 239, 915 

106335, doi:10.1016/j.quascirev.2020.106335, 2020. 

Mckay, N., Emile-Geay, J. and Khider, D.: GeoChronR – an R package to model, analyze, and visualize age-uncertain data, 

Geochronology, 3, 149-169, https://doi.org/10.5194/gchron-3-149-2021, 2021. 

McKay, N. P.: Development package for varve counting, modeling and analysis., 2019. 

Mortlock, R. A. and Froelich, P. N.: A simple method for the rapid determination of biogenic opal in pelagic marine 920 

sediments, Deep Sea Res. Part A, Oceanogr. Res. Pap., 36(9), 1415–1426, doi:10.1016/0198-0149(89)90092-7, 1989. 

Mulder, T. and Syvitski, J. P. M.: Turbidity currents generated at river mouths during exceptional discharges to the world 

oceans, J. Geol., 103(3), 285–299, doi:10.1086/629747, 1995. 

Mulder, T., Migeon, S., Savoye, B. and Faugeres, J.-C.: Inversely graded turbidite sequences in the deep Mediterranean: A 

record of deposits from flood-generated turbidity currents? Geo-Marine Lett., 21(2), 86–93, doi:10.1007/s003670100071, 925 

2001. 

Naeher, S., Gilli, A., North, R. P., Hamann, Y. and Schubert, C. J.: Tracing bottom water oxygenation with sedimentary 

Mn/Fe ratios in Lake Zurich, Switzerland, Chem. Geol., 352, 125–133, doi:10.1016/j.chemgeo.2013.06.006, 2013. 

Neff, J. C., Ballantyne, A. P., Farmer, G. L., Mahowald, N. M., Conroy, J. L., Landry, C. C., Overpeck, J. T., Painter, T. H., 

Lawrence, C. R. and Reynolds, R. L.: Increasing eolian dust deposition in the western United States linked to human 930 

activity, Nat. Geosci., 1(3), 189–195, doi:10.1038/ngeo133, 2008. 

O’Sullivan, P. E.: Annually-laminated lake sediments and the study of Quaternary environmental changes - a review, Quat. 

Sci. Rev., 1(4), 245–313, doi:10.1016/0277-3791(83)90008-2, 1983. 

Ojala, A. E. K. and Tiljander, M.: Testing the fidelity of sediment chronology: Comparison of varve and paleomagnetic 

results from Holocene lake sediments from central Finland, Quat. Sci. Rev., 22(15–17), 1787–1803, doi:10.1016/S0277-935 

3791(03)00140-9, 2003. 

Ojala, A. E. K., Saarinen, T. and Salonen, V. P.: Preconditions for the formation of annually laminated lake sediments in 

southern and central Finland, Boreal Environ. Res., 5(3), 243–255, 2000. 

Ojala, A. E. K., Francus, P., Zolitschka, B., Besonen, M. and Lamoureux, S. F.: Characteristics of sedimentary varve 

chronologies - A review, Quat. Sci. Rev., 43, 45–60, doi:10.1016/j.quascirev.2012.04.006, 2012. 940 

Palmer, A. P., Bendle, J. M., MacLeod, A., Rose, J. and Thorndycraft, V. R.: The micromorphology of glaciolacustrine 

varve sediments and their use for reconstructing palaeoglaciological and palaeoenvironmental change, Quat. Sci. Rev., 226, 

105964, doi:10.1016/j.quascirev.2019.105964, 2019. 

Parnell, A. C., Buck, C. E. and Doan, T. K.: A review of statistical chronology models for high-resolution, proxy-based 

Holocene palaeoenvironmental reconstruction, Quat. Sci. Rev., 30(21–22), 2948–2960, doi:10.1016/j.quascirev.2011.07.024, 945 

2011. 

https://doi.org/10.5194/gchron-2021-15
Preprint. Discussion started: 21 June 2021
c© Author(s) 2021. CC BY 4.0 License.



52 

 

Preibisch, S., Saalfeld, S. and Tomancak, P.: Globally optimal stitching of tiled 3D microscopic image acquisitions, 

Bioinformatics, 25(11), 1463–1465, doi:10.1093/bioinformatics/btp184, 2009. 

R Core Team: R: A Language and Environment for Statistical Computing, [online] Available from: https://www.r-

project.org/, 2019. 950 

Rein, B. and Sirocko, F.: In-situ reflectance spectroscopy – analysing techniques for high-resolution pigment logging in 

sediment cores, Int. J. Earth Sci., 91, 950–954, 2002. 

Rodysill, J. R., Anderson, L., Cronin, T. M., Jones, M. C., Thompson, R. S., Wahl, D. B., Willard, D. A., Addison, J. A., 

Alder, J. R., Anderson, K. H., Anderson, L., Barron, J. A., Bernhardt, C. E., Hostetler, S. W., Kehrwald, N. M., Khan, N. S., 

Richey, J. N., Starratt, S. W., Strickland, L. E., Toomey, M. R., Treat, C. C. and Wingard, G. L.: A North American 955 

Hydroclimate Synthesis (NAHS) of the Common Era, Glob. Planet. Change, 162(December 2017), 175–198, 

doi:10.1016/j.gloplacha.2017.12.025, 2018. 

Routson, C. C., Woodhouse, C. A. and Overpeck, J. T.: Second century megadrought in the Rio Grande headwaters, 

Colorado: How unusual was medieval drought? Geophys. Res. Lett., 38(22), 1–5, doi:10.1029/2011GL050015, 2011. 

Routson, C. C., Overpeck, J. T., Woodhouse, C. A. and Kenney, W. F.: Three millennia of southwestern north American 960 

dustiness and future implications, PLoS One, 11(2), 1–20, doi:10.1371/journal.pone.0149573, 2016. 

Routson, C. C., Arcusa, S. H., McKay, N. P. and Overpeck, J. T.: A 4500‐year‐long record of southern Rocky Mountain dust 

deposition, Geophys. Res. Lett., 46, 2019GL083255, doi:10.1029/2019GL083255, 2019. 

Schlolaut, G., Marshall, M. H., Brauer, A., Nakagawa, T., Lamb, H. F., Staff, R. A., Bronk Ramsey, C., Bryant, C. L., 

Brock, F., Kossler, A., Tarasov, P. E., Yokoyama, Y., Tada, R. and Haraguchi, T.: An automated method for varve 965 

interpolation and its application to the Late Glacial chronology from Lake Suigetsu, Japan, Quat. Geochronol., 13, 52–69, 

doi:10.1016/j.quageo.2012.07.005, 2012. 

Schneider, T., Hampel, H., Mosquera, P. V., Tylmann, W. and Grosjean, M.: Paleo-ENSO revisited: Ecuadorian Lake 

Pallcacocha does not reveal a conclusive El Niño signal, Glob. Planet. Change, 168(June), 54–66, 

doi:10.1016/j.gloplacha.2018.06.004, 2018. 970 

Sheppard, P. R., Comrie, A. C., Packin, G. D., Angersbach, K. and Hughes, M. K.: The climate of the US Southwest, Clim. 

Res., 21, 219–238, 2002. 

Tian, J., Brown, T. A. and Hu, F. S.: Comparison of varve and 14C chronologies from Steel Lake, Minnesota, USA, The 

Holocene, 15(4), 510–517, doi:10.1191/0959683605hl828rp, 2005. 

Trachsel, M., Grosjean, M., Schnyder, D., Kamenik, C. and Rein, B.: Scanning reflectance spectroscopy (380-730 nm): A 975 

novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments, J. Paleolimnol., 

44(4), 979–994, doi:10.1007/s10933-010-9468-7, 2010. 

Western Regional Climate Center: Cooperative Climatological Data Summaries, [online] Available from: 

https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?co7656, 2018. 

https://doi.org/10.5194/gchron-2021-15
Preprint. Discussion started: 21 June 2021
c© Author(s) 2021. CC BY 4.0 License.



53 

 

Yackulic, E.: Productivity and temperature variability over the past 15000 years at a small alpine lake in the southern San 980 

Juan Mountains, Colorado, Northern Arizona University., 2017. 

Zander, P. D., Szidat, S., Kaufman, D. S., Żarczyński, M., Poraj-górska, A. I. and Grosjean, M.: Miniature radiocarbon 

measurements (< 150 μg C) from sediments of Lake Żabińskie, Poland: effect of precision and dating density on age-depth 

models, Geochronology, (December), 63–79, 2019. 

Żarczyński, M., Tylmann, W. and Goslar, T.: Multiple varve chronologies for the last 2000 years from the sediments of Lake 985 

Żabińskie (northeastern Poland) – Comparison of strategies for varve counting and uncertainty estimations, Quat. 

Geochronol., 47(January), 107–119, doi:10.1016/j.quageo.2018.06.001, 2018. 

Żarczyński, M., Szmańda, J. and Tylmann, W.: Grain-Size Distribution and Structural Characteristics of Varved Sediments 

from Lake Żabińskie (Northeastern Poland), Quaternary, 2(1), 8, doi:10.3390/quat2010008, 2019a. 

Żarczyński, M., Wacnik, A. and Tylmann, W.: Tracing lake mixing and oxygenation regime using the Fe/Mn ratio in varved 990 

sediments: 2000 year-long record of human-induced changes from Lake Żabińskie (NE Poland), Sci. Total Environ., 657, 

585–596, doi:10.1016/j.scitotenv.2018.12.078, 2019b. 

Zhai, Q., Guo, Z., Li, Y. and Li, R.: Annually laminated lake sediments and environmental changes in Bashang Plateau, 

North China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 241(1), 95–102, doi:10.1016/j.palaeo.2006.06.011, 2006. 

Zimmerman, S. R. H. and Wahl, D. B.: Holocene paleoclimate change in the western US: The importance of chronology in 995 

discerning patterns and drivers, Quat. Sci. Rev., 246, 106487, doi:10.1016/j.quascirev.2020.106487, 2020. 

Zolitschka, B., Francus, P., Ojala, A. E. K. and Schimmelmann, A.: Varves in lake sediments - a review, Quat. Sci. Rev., 

117, 1–41, doi:10.1016/j.quascirev.2015.03.019, 2015. 

https://doi.org/10.5194/gchron-2021-15
Preprint. Discussion started: 21 June 2021
c© Author(s) 2021. CC BY 4.0 License.


